Oxygen availability limits renal NADPH-dependent superoxide production.

نویسندگان

  • Yifan Chen
  • Pritmohinder S Gill
  • William J Welch
چکیده

Renal oxygen tension is substantially lower in the medulla than in the cortex and is reduced in hypertensive rats, a model of oxidative stress. Expression of NADPH oxidase, the primary source for superoxide anion (O(2)(-)*) in the kidney, is elevated in hypertension. Because molecular oxygen (O(2)) is required for O(2)(-)* formation, we tested the hypothesis that renal NADPH oxidase activity is limited by low O(2). O(2)(-)* production by rat kidney tissue or cultured cells exposed to levels of Po(2) that mimics those in the kidney was assessed by lucigenin-enhanced chemiluminescence. NADPH-dependent O(2)(-)* production by kidney homogenates decreased reversibly by 60-90% after graded reductions of ambient O(2) from 10 to 0% (76 to 2 mmHg Po(2)). The NADPH-dependent O(2)(-)* production by the kidney homogenate was reduced by decreasing Po(2) below approximately 30 mmHg. The response of tissue homogenates to low Po(2) was not different between normotensive and hypertensive rats. Similarly, NADPH-dependent O(2)(-)* production was lower during 2% O(2) compared with 10% O(2) in rat proximal tubule cells (-57 +/- 1%), vascular smooth muscle (-42 +/- 5%), cardiomyocytes (-57 +/- 1%), and mouse inner medulla collecting duct cells (-58 +/- 3%). We conclude that O(2)(-)* production by NADPH oxidase is dependent on availability of O(2). Therefore, O(2)(-)* generation may be limited in the kidney, both in the normal renal medulla and in the cortex of hypertensive kidneys.

منابع مشابه

Crumbs limits oxidase-dependent signaling to maintain epithelial integrity and prevent photoreceptor cell death

Drosophila melanogaster Crumbs (Crb) and its mammalian orthologues (CRB1-3) share evolutionarily conserved but poorly defined roles in regulating epithelial polarity and, in photoreceptor cells, morphogenesis and stability. Elucidating the molecular mechanisms of Crb function is vital, as mutations in the human CRB1 gene cause retinal dystrophies. Here, we report that Crb restricts Rac1-NADPH o...

متن کامل

Role of superoxide in modulating the renal effects of angiotensin II.

Angiotensin II is known to stimulate NADPH oxidase-dependent superoxide (O2-) generation, which may contribute to the acute renal vasoconstrictor and antinatriuretic actions of this peptide. To evaluate this hypothesis, the effects of a superoxide dismutase mimetic (tempol) or a NADPH inhibitor (apocynin) on the angiotensin renal actions were studied. Renal cortical nitric oxide (NO) was measur...

متن کامل

Temporal changes in the expression of mRNA of NADPH oxidase subunits in renal epithelial cells exposed to oxalate or calcium oxalate crystals.

BACKGROUND Exposure of renal epithelial cells to oxalate (Ox) or calcium oxalate (CaOx) crystals leads to the production of reactive oxygen species and cell injury. We have hypothesized that Ox and CaOx crystals activate NADPH oxidase through upregulation of its various subunits. METHODS Human renal epithelial-derived cell line, HK-2, was exposed to 100 μmol Ox or 66.7 μg/cm(2) CaOx monohydra...

متن کامل

Exploiting algal NADPH oxidase for biophotovoltaic energy

Photosynthetic microbes exhibit light-dependent electron export across the cell membrane, which can generate electricity in biological photovoltaic (BPV) devices. How electrons are exported remains to be determined; the identification of mechanisms would help selection or generation of photosynthetic microbes capable of enhanced electrical output. We show that plasma membrane NADPH oxidase acti...

متن کامل

Oleoyl-Lysophosphatidylcholine Limits Endothelial Nitric Oxide Bioavailability by Induction of Reactive Oxygen Species

Previously we reported modulation of endothelial prostacyclin and interleukin-8 production, cyclooxygenase-2 expression and vasorelaxation by oleoyl- lysophosphatidylcholine (LPC 18:1). In the present study, we examined the impact of this LPC on nitric oxide (NO) bioavailability in vascular endothelial EA.hy926 cells. Basal NO formation in these cells was decreased by LPC 18:1. This was accompa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 289 4  شماره 

صفحات  -

تاریخ انتشار 2005